Ҳисоб кунед:
$$12. \frac{2\frac{5}{8} - \frac{2}{3} \cdot 2\frac{5}{14}}{(3\frac{1}{12} + 4,375) : 19\frac{8}{9}}.$$
Ҳал:
\(12. \frac{2\frac{5}{8} - \frac{2}{3} \cdot 2\frac{5}{14}}{(3\frac{1}{12} + 4,375) : 19\frac{8}{9}} = 2\frac{17}{21}.\)
\(
1) \frac{2}{3} \cdot 2\frac{5}{14} = \frac{2}{3} \cdot \frac{33}{14} = \frac{2 \cdot 33}{3 \cdot 14} = \frac{1 \cdot 11}{1 \cdot 7} = \frac{11}{7} = 1\frac{4}{7};
\)
\(
2) 2\frac{5}{8} - 1\frac{4}{7} = 2\frac{35}{56} - 1\frac{32}{56} = 1\frac{3}{56};
\)
\(
3) 3\frac{1}{12} + 4,375 = 3\frac{1}{12} + 4\frac{375}{1000} = 3\frac{1}{12} + 4\frac{3}{8} = 3\frac{2}{24} + 4\frac{9}{24} = 7\frac{11}{24};
\)
\(
4) 7\frac{11}{24} : 19\frac{8}{9} = \frac{179}{24} : \frac{179}{9} = \frac{179}{24} \cdot \frac{9}{179} = \frac{179 \cdot 9}{24 \cdot 179} = \frac{1 \cdot 3}{8 \cdot 1} = \frac{3}{8};
\)
\(
5) 1\frac{3}{56} : \frac{3}{8} = \frac{59}{56} \cdot \frac{8}{3} = \frac{59 \cdot 8}{56 \cdot 3} = \frac{59 \cdot 1}{7 \cdot 3} = \frac{59}{21} = 2\frac{17}{21}.
\)
Ҷавоб: \(2\frac{17}{21}.\)
Ҳисоб кунед: \(\frac{2\frac{5}{8} - \frac{2}{3} \cdot 2\frac{5}{14}}{(3\frac{1}{12} + 4,375) : 19\frac{8}{9}}\)
- Информация о материале
- Автор: Раҳматҷон Ҳакимов
- Категория: Математикаи элементарӣ
- Просмотров: 544
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)