Саводи молиявӣ
Дар ин бахш мақолаҳо дар бораи пул, муносибат ба он, саводи ибтидоии иқтисодӣ оварда шудаанд. Мақсади асосии ин бахш он аст, ки хонанда оиди масъалаҳои молиявии шахсии худ хулосаҳое барорад, ки ӯро аз қадамҳои хато дар муомила бо пул нигоҳ доранд.
Барои амалия ва ҳалли масъалаҳои ҷиддӣ ҳатман машварат ва маслиҳати мутахассисонро истифода баред!
Муаллиф: Раҳматҷон Ҳакимов
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)