(Антонов Н.П. и др. Сборник задач по элементарной математике)
Қимати ифодаро ёбед:
$$
\textbf{3.} \frac{215\frac{9}{16} - 208\frac{3}{4} + \frac{1}{2}}{0,0001 : 0,005}.
$$
Ҳал.
\(\frac{215\frac{9}{16} - 208\frac{3}{4} + \frac{1}{2}}{0,0001 : 0,005} = 365\frac{5}{8}.\)
\(1) 215\frac{9}{16} - 208\frac{3}{4} = 215\frac{9}{16} - 208\frac{12}{16} = \)
\(=214 + 1 + \frac{9}{16} - 208 - \frac{12}{16} = 214 + \frac{16}{16} + \frac{9}{16} - 208\frac{12}{16} = \)
\(=214\frac{25}{16} - 208 - \frac{12}{16} = 214 - 208 + (\frac{25}{16} - \frac{12}{16}) = 6\frac{13}{16};\)
\(2) 6\frac{13}{16} + \frac{1}{2} = 6\frac{13}{16} + \frac{8}{16} = 6 + \frac{13 + 8}{16} = 6\frac{21}{16} = 6 + 1\frac{5}{16} = 7\frac{5}{16};
\)
\(3) 0,0001 : 0,005 = \frac{0,0001}{0,005} = \frac{1}{50};\)
\(4) 7\frac{5}{16} : \frac{1}{50} = \frac{117}{16} \cdot \frac{50}{1} = \frac{117 \cdot 50}{16 \cdot 1} = \frac{117 \cdot 25}{8 \cdot 1} = \frac{2925}{8} = 365\frac{5}{8}.\)
Ҷавоб:\(365\frac{5}{8}\).
Қимати ифодаро ёбед: \(\frac{215\frac{9}{16} - 208\frac{3}{4} + \frac{1}{2}}{0,0001 : 0,005}\)
- Информация о материале
- Автор: Раҳматҷон Ҳакимов
- Категория: Математикаи элементарӣ
- Просмотров: 680
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)