$$
\textbf{8.} \frac{(49\frac{5}{24} - 46\frac{7}{20}) \cdot 2\frac{1}{3} + 0,6}{0,2}.
$$
Ҳал.
\(
\frac{(49\frac{5}{24} - 46\frac{7}{20}) \cdot 2\frac{1}{3} + 0,6}{0,2} = 36\frac{25}{72}.
\)
\(
1) 49\frac{5}{24} - 46\frac{7}{20} = 49\frac{25}{120} - 46\frac{42}{120} = 48 + 1 + \frac{25}{120} - 46 - \frac{42}{120} =
\)
\(
= 48 + \frac{120}{120} + \frac{25}{120} - 46 - \frac{42}{120} = 48 - 46 + (\frac{120}{120} + \frac{25}{120} - \frac{42}{120}) =
\)
\(
= 2 + \frac{120 + 25 - 42}{120} = 2\frac{103}{120};
\)
\(
2) 2\frac{103}{120} \cdot 2\frac{1}{3} = \frac{343}{120} \cdot \frac{7}{3} = \frac{2401}{360} = 6\frac{241}{360};
\)
\(
3) 6\frac{241}{360} + 0,6 = 6\frac{241}{360} + \frac{3}{5} = 6\frac{241}{360} + \frac{216}{360} = 6 + \frac{241 + 216}{360} = 6 + \frac{457}{360} =
\)
\(
= 6 + 1\frac{97}{360} = 7\frac{97}{360};
\)
\(
4) 7\frac{97}{360} : 0,2 = \frac{2617}{360} : \frac{1}{5} = \frac{2617}{360} \cdot \frac{5}{1} = \frac{2617 \cdot 5}{360 \cdot 1} = \frac{2617 \cdot 1}{72 \cdot 1} = \frac{2617}{72} = 36\frac{25}{72}.
\)
Ҷавоб: \(36\frac{25}{72}\).
Қимати ифодаро ёбед: \(\frac{(49\frac{5}{24} - 46\frac{7}{20}) \cdot 2\frac{1}{3} + 0,6}{0,2}\)
- Информация о материале
- Автор: Раҳматҷон Ҳакимов
- Категория: Математикаи элементарӣ
- Просмотров: 709
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)