Кунҷ бо градусҳо | Кунҷ бо радианҳо | $$ sin $$ | $$ cos $$ | $$ tg $$ | $$ ctg $$ |
---|---|---|---|---|---|
$$ 0^{\circ} $$ | 0 | $$ 0 $$ | $$1$$ | $$0$$ | $$-$$ |
$$ 30^{\circ} $$ | $$\frac{\pi}{6}$$ | $$\frac{1}{2}$$ | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{\sqrt{3}}$$ | $$\sqrt{3}$$ |
$$ 45^{\circ} $$ | $$\frac{\pi}{4}$$ | $$\frac{\sqrt{2}}{2}$$ | $$\frac{\sqrt{2}}{2}$$ | $$1$$ | $$1$$ |
$$ 60^{\circ} $$ | $$\frac{\pi}{3}$$ | $$\frac{\sqrt{3}}{2}$$ | $$\frac{1}{2}$$ | $$\sqrt{3}$$ | $$\frac{1}{\sqrt{3}}$$ |
$$ 90^{\circ} $$ | $$\frac{\pi}{2}$$ | $$1$$ | $$0$$ | $$-$$ | $$0$$ |
$$ 120^{\circ} $$ | $$\frac{2\pi}{3}$$ | $$\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{2}$$ | $$-\sqrt{3}$$ | $$-\frac{1}{\sqrt{3}}$$ |
$$ 135^{\circ} $$ | $$\frac{3\pi}{4}$$ | $$\frac{\sqrt{2}}{2}$$ | $$-\frac{\sqrt{2}}{2}$$ | $$-1$$ | $$-1$$ |
$$ 150^{\circ} $$ | $$\frac{5\pi}{6}$$ | $$\frac{1}{2}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{\sqrt{3}}$$ | $$-\sqrt{3}$$ |
$$ 180^{\circ} $$ | $$\pi$$ | $$0$$ | $$-1$$ | $$0$$ | $$-$$ |
$$ 210^{\circ} $$ | $$\frac{7\pi}{6}$$ | $$-\frac{1}{2}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$\frac{1}{\sqrt{3}}$$ | $$\sqrt{3}$$ |
$$ 225^{\circ} $$ | $$\frac{5\pi}{4}$$ | $$-\frac{\sqrt{2}}{2}$$ | $$-\frac{\sqrt{2}}{2}$$ | $$1$$ | $$1$$ |
$$ 240^{\circ} $$ | $$\frac{4\pi}{3}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{2}$$ | $$\sqrt{3}$$ | $$\frac{1}{\sqrt{3}}$$ |
$$ 270^{\circ} $$ | $$\frac{3\pi}{2}$$ | $$-1$$ | $$0$$ | $$-$$ | $$0$$ |
$$ 300^{\circ} $$ | $$\frac{5\pi}{3}$$ | $$-\frac{\sqrt{3}}{2}$$ | $$\frac{1}{2}$$ | $$-\sqrt{3}$$ | $$-\frac{1}{\sqrt{3}}$$ |
$$ 330^{\circ} $$ | $$\frac{7\pi}{4}$$ | $$-\frac{\sqrt{2}}{2}$$ | $$\frac{\sqrt{2}}{2}$$ | $$-1$$ | $$-1$$ |
$$ 345^{\circ} $$ | $$\frac{11\pi}{6}$$ | $$-\frac{1}{2}$$ | $$\frac{\sqrt{3}}{2}$$ | $$-\frac{1}{\sqrt{3}}$$ | $$-\sqrt{3}$$ |
$$ 360^{\circ} $$ | $$2\pi$$ | $$ 0 $$ | $$1$$ | $$0$$ | $$-$$ |
Ҷадвали қимати функсияҳои тригонометрӣ
- Информация о материале
- Автор: Раҳматҷон Ҳакимов
- Категория: Формулаҳо ва мафҳумҳо
- Просмотров: 826
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)