Айниятро исбот намоед: \(\sin{9\alpha}+\sin{10\alpha}+\sin{11\alpha}+\sin{12\alpha}=4\cos{\frac{\alpha}{2}}\cos{\alpha}\sin{\frac{21\alpha}{2}}\)
- Информация о материале
- Автор: Раҳимҷон Ҳакимов
- Категория: Тригонометрия
- Просмотров: 641
Айниятро исбот намоед:
\(\sin{9\alpha}+\sin{10\alpha}+\sin{11\alpha}+\sin{12\alpha}=4\cos{\frac{\alpha}{2}}\cos{\alpha}\sin{\frac{21\alpha}{2}}\)
\(\sin{9\alpha}+\sin{11\alpha}=2\sin{\frac{9+11\alpha}{2}}\cos{\frac{9-11\alpha}{2}}=2\sin{10\alpha}\cos{\alpha}\)
\(\sin{10\alpha}+\sin{12\alpha}=2\sin{\frac{10+12\alpha}{2}}\cos{\frac{10-12\alpha}{2}}=2\sin{12\alpha}\cos{\alpha}\)
\(\sin{9\alpha}+\sin{10\alpha}+\sin{11\alpha}+\sin{12\alpha}=2\sin{10\alpha}\cos{\alpha}+2\sin{11\alpha}\cos{\alpha}=\)
\(=2\cos{\alpha}(\sin{10\alpha}+\sin{11\alpha})\)
\(\sin{10\alpha}+\sin{11\alpha}=2\sin{\frac{10+11\alpha}{2}}\cos{\frac{10-11\alpha}{2}}=2\sin{\frac{21\alpha}{2}}\cos{\frac{\alpha}{2}}\)
\(\sin{9\alpha}+\sin{10\alpha}+\sin{11\alpha}+\sin{12\alpha}=4\cos{\frac{\alpha}{2}}\cos{\alpha}\sin{\frac{21\alpha}{2}}\)
Айният исбот шуд.
- Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
- Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
- Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
- Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
- Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
- Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
- Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
- Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
- Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)