oftob.com/tj
Омӯзишгоҳи виртуалии илмҳои компютерӣ
Включить/выключить навигацию

  • Ибтидо
  • Барномасозӣ
  • Математика
  • Масъалаҳои шавқовар
  • Мақолаҳо
  • Саводи молиявӣ

Сатрҳо

Сатр ин пайдарпаии рамзҳо, ки дар ин пайдарпаи зиёда аз як рамз мавҷуд аст, мебошад. Дар хотира сатр ҳамчун массиви рамзҳои ҷудогона нигоҳ дошта мешавад.

Сатрҳо барои нигоҳ доштани маълумоти дарози дохилшаванда лозиманд, ба мисоли фамилия, номи давлатҳо, молҳо.

Муаллифон: Раҳматҷон Ҳакимов, Муҳаммадҷон Ҳакимов

Фильтры
Список материалов в категории Сатрҳо
Заголовок Кол-во просмотров
Сатрҳо. 040 Просмотров: 1132
Сатрҳо. 039 Просмотров: 1038
Сатрҳо. 038 Просмотров: 1047
Сатрҳо. 037 Просмотров: 1010
Сатрҳо. 036 Просмотров: 1025
Сатрҳо. 035 Просмотров: 1090
Сатрҳо. 034 Просмотров: 1039
Сатрҳо. 033 Просмотров: 1026
Сатрҳо. 032 Просмотров: 1050
Сатрҳо. 031 Просмотров: 1014
Сатрҳо. 042 Просмотров: 1078
Сатрҳо. 041 Просмотров: 1060
Сатрҳо. 050 Просмотров: 1033
Сатрҳо. 049 Просмотров: 1053
Сатрҳо. 048 Просмотров: 1033

Страница 1 из 2

  • 1
  • 2

  • Вы здесь:  
  • Главная
  • Масъалаҳо аз барномасозӣ
  • Сатрҳо
  • Таҳқиқи функсияи \(y = \frac{x^3-1}{4x^2}\)
  • Таҳқиқи функсияи \(y = \ln{\frac{x+1}{x+2}}\)
  • Таҳқиқи функсияи \(y = \frac{e^x}{x}\)
  • Таҳқиқи функсияи \(y = -\frac{1}{4}(x^3-3x^2+4)\)
  • Соҳаи муайянии функсияи \(y = \frac{x^2}{1+x}\)
  • Соҳаи муайянии функсияи \(y = \sqrt{\cos x^2}\)
  • Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\left(\frac{1}{n^2} + \frac{2}{n^2} + ... + \frac{n-1}{n^2} \right)\)
  • Соҳаи муайянии функсияи \(y = \sqrt{\sin\left(\sqrt{x}\right)}\)
  • Ҳисоб карда шавад: \(\lim\limits_{n \rightarrow \infty}\frac{1 + a + a^2 + ... + a^n}{1 + b + b^2 + ... + b^n}\)
  • Соҳаи муайянии функсияи \(y = \log(x+2) + \log(x-2)\)

Маводи машҳур

  • Масъалаҳои шавқовари математикӣ. Қисми 1
  • Масъалаҳои шавқовари математикӣ. Қисми 2
  • Масъалаҳои шавқовари математикӣ. Қисми 3
  • Воҳидҳои ченаки масса, дарозӣ, масоҳат, ҳаҷм, иттилоот
  • BOOL04. Ифодаҳои мантиқӣ
  • Формулаҳои зарби мухтасар
  • BOOL03. Ифодаҳои мантиқӣ
  • PHP. Тағйирёбандаҳо
  • BOOL25. Ифодаҳои мантиқӣ
  • Саволу ҷавоб аз мавзӯи "Кунҷҳои ҳамсоя ва амудӣ"

Top.Mail.Ru

Наверх

© 2025 Омӯзишгоҳи виртуалии илмҳои компютерӣ - oftob.com/tj