Исбот кунед, ки
\(1+\frac{1}{2}+...+\frac{1}{n}\geq n(\sqrt[n]{n+1}-1)\)
\(S_n = 1+\frac{1}{2}+...+\frac{1}{n}\)
\(S_n\geq n(\sqrt[n]{n+1}-1)\)
\(S_n\geq n\cdot\sqrt[n]{n+1}-n\)
\(S_n+n\geq n\cdot\sqrt[n]{n+1}\)
Акнун мо бояд исбот кунем, ки \(S_n+n\geq n\cdot\sqrt[n]{n+1}.\)
\(S_n+n = n+(1+\frac{1}{2}+...+\frac{1}{n})=\)
\(=(1+1)+(1+\frac{1}{2})+...+(1+\frac{1}{n})=\)
\(=\frac{2}{1}+\frac{3}{2}+...+\frac{n+1}{n}=\)
\(=n\cdot(\frac{\frac{2}{1}+\frac{3}{2}+...+\frac{n+1}{n}}{n})\)
\(\frac{a_1+a_2+...+a_n}{n}\geq\sqrt[n]{a_1\cdot a_2\cdot..\cdot a_n}\)
\(\frac{\frac{2}{1}+\frac{3}{2}+...+\frac{n+1}{n}}{n}\geq\sqrt[n]{\frac{2}{1}\cdot\frac{3}{2}\cdot...\cdot\frac{n+1}{n}}=\)
\(=\sqrt[n]{n+1}\)
Яъне,
\(n\cdot(\frac{\frac{2}{1}+\frac{3}{2}+...+\frac{n+1}{n}}{n})\geq n\cdot\sqrt[n]{n+1}\)
\(S_n+n\geq n\cdot\sqrt[n]{n+1}\)
\(S_n\geq n\cdot\sqrt[n]{n+1}-n\)
\(S_n\geq n\cdot(\sqrt[n]{n+1}-1)\)
Исбот шуд.