-
Информация о материале
-
Автор: Раҳматҷон Ҳакимов
-
Категория: Формулаҳо ва мафҳумҳо
-
-
Просмотров: 1203
| Кунҷ бо градусҳо | Кунҷ бо радианҳо |
$$ sin $$ |
$$ cos $$ |
$$ tg $$ |
$$ ctg $$ |
| $$ 0^{\circ} $$ | 0 |
$$ 0 $$ |
$$1$$ |
$$0$$ |
$$-$$ |
| $$ 30^{\circ} $$ | $$\frac{\pi}{6}$$ |
$$\frac{1}{2}$$ |
$$\frac{\sqrt{3}}{2}$$ |
$$\frac{1}{\sqrt{3}}$$ |
$$\sqrt{3}$$ |
| $$ 45^{\circ} $$ | $$\frac{\pi}{4}$$ |
$$\frac{\sqrt{2}}{2}$$ |
$$\frac{\sqrt{2}}{2}$$ |
$$1$$ |
$$1$$ |
| $$ 60^{\circ} $$ | $$\frac{\pi}{3}$$ |
$$\frac{\sqrt{3}}{2}$$ |
$$\frac{1}{2}$$ |
$$\sqrt{3}$$ |
$$\frac{1}{\sqrt{3}}$$ |
| $$ 90^{\circ} $$ | $$\frac{\pi}{2}$$ |
$$1$$ |
$$0$$ |
$$-$$ |
$$0$$ |
| $$ 120^{\circ} $$ | $$\frac{2\pi}{3}$$ |
$$\frac{\sqrt{3}}{2}$$ |
$$-\frac{1}{2}$$ |
$$-\sqrt{3}$$ |
$$-\frac{1}{\sqrt{3}}$$ |
| $$ 135^{\circ} $$ | $$\frac{3\pi}{4}$$ |
$$\frac{\sqrt{2}}{2}$$ |
$$-\frac{\sqrt{2}}{2}$$ |
$$-1$$ |
$$-1$$ |
| $$ 150^{\circ} $$ | $$\frac{5\pi}{6}$$ |
$$\frac{1}{2}$$ |
$$-\frac{\sqrt{3}}{2}$$ |
$$-\frac{1}{\sqrt{3}}$$ |
$$-\sqrt{3}$$ |
| $$ 180^{\circ} $$ | $$\pi$$ |
$$0$$ |
$$-1$$ |
$$0$$ |
$$-$$ |
| $$ 210^{\circ} $$ | $$\frac{7\pi}{6}$$ |
$$-\frac{1}{2}$$ |
$$-\frac{\sqrt{3}}{2}$$ |
$$\frac{1}{\sqrt{3}}$$ |
$$\sqrt{3}$$ |
| $$ 225^{\circ} $$ | $$\frac{5\pi}{4}$$ |
$$-\frac{\sqrt{2}}{2}$$ |
$$-\frac{\sqrt{2}}{2}$$ |
$$1$$ |
$$1$$ |
| $$ 240^{\circ} $$ | $$\frac{4\pi}{3}$$ |
$$-\frac{\sqrt{3}}{2}$$ |
$$-\frac{1}{2}$$ |
$$\sqrt{3}$$ |
$$\frac{1}{\sqrt{3}}$$ |
| $$ 270^{\circ} $$ | $$\frac{3\pi}{2}$$ |
$$-1$$ |
$$0$$ |
$$-$$ |
$$0$$ |
| $$ 300^{\circ} $$ | $$\frac{5\pi}{3}$$ |
$$-\frac{\sqrt{3}}{2}$$ |
$$\frac{1}{2}$$ |
$$-\sqrt{3}$$ |
$$-\frac{1}{\sqrt{3}}$$ |
| $$ 330^{\circ} $$ | $$\frac{7\pi}{4}$$ |
$$-\frac{\sqrt{2}}{2}$$ |
$$\frac{\sqrt{2}}{2}$$ |
$$-1$$ |
$$-1$$ |
| $$ 345^{\circ} $$ | $$\frac{11\pi}{6}$$ |
$$-\frac{1}{2}$$ |
$$\frac{\sqrt{3}}{2}$$ |
$$-\frac{1}{\sqrt{3}}$$ |
$$-\sqrt{3}$$ |
| $$ 360^{\circ} $$ | $$2\pi$$ |
$$ 0 $$ |
$$1$$ |
$$0$$ |
$$-$$ |