Вычислить:
$$10. \frac{(1\frac{1}{12} + 2\frac{5}{32} + \frac{1}{24}) \cdot 9\frac{3}{5} + 2,13}{0,4}.$$
Решение:
\(10. \frac{(1\frac{1}{12} + 2\frac{5}{32} + \frac{1}{24}) \cdot 9\frac{3}{5} + 2,13}{0,4} = 84,075.\)
\(
1) 1\frac{1}{12} + 2\frac{5}{32} = 1\frac{8}{96} + 2\frac{15}{96} = 3\frac{23}{96};
\)
\(
2) 3\frac{23}{96} + \frac{1}{24} = 3\frac{23}{96} + \frac{4}{96} = 3\frac{27}{96} = 3\frac{9}{32};
\)
\(
3) 3\frac{9}{32} \cdot 9\frac{3}{5} = \frac{105}{32} \cdot \frac{48}{5} = \frac{105 \cdot 48}{32 \cdot 5} = \frac{21 \cdot 3}{2 \cdot 1} = \frac{63}{2} = 31\frac{1}{2} = 31,5;
\)
\(
4) 31,5 + 2,13 = 33,63;
\)
\(
5) 33,63 : 0,4 = 84,075.
\)
Ответ: 84,075.
Антонов Н.П. и др. Сборник задач по элементарной математике. Арифметические вычисления. №10
- Информация о материале
- Категория: Антонов Н.П. и др. Сборник задач по элементарной математике
- Просмотров: 1747