Глава 13. Задача 3. Непрерывная случайная величина \(X\) распределена по показательному закону \(f(x) = 4e^{-4x}\) \((x > 0)\). Найти математическое ожидание, среднее квадратическое отклонение и дисперсию \(X\).
Решение.
Математическое ожидание и среднее квадратическое отклонение показательного распределения равны обратной величине параметра \(\lambda\):
\[M(X) = \sigma(X) = 1/\lambda.\]
Дисперсия
\[D(X) = 1/\lambda^2.\]
По условию задачи \(\lambda = 4\).
Таким образом, искомые математическое ожидание и среднее квадратическое отклонение равны
\[M(X) = \sigma(X) = 1 / \lambda = 1 / 4 = 0,25.\]
Искомая дисперсия равна
\[D(X) = 1/\lambda^2 = 1 / 16 = 0,0625.\]
Ответ. \(M(X) = \sigma(X) = 0,25\); \(D(X) = 0,0625\).